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Some means of controlling thermal regimes in the case of a high-enthalpy flow past a blunt body at an angle
of attack with a simultaneous influence of the gas blown-in from the permeable bluntness surface and over-
flowing of heat in the shell of the material are considered. The effectiveness of applying highly conducting
materials in order to lower maximum temperatures in a zone of a screen is shown.

Introduction. Among the most complex problems in designing high-velocity flying vehicles is the problem of
thermal shielding of a structure. Higher demands made upon the accuracy of determining the characteristics of heat
and mass transfer in the shell of a body immersed in a flow necessitate the solution of the problem in a joint state-
ment, which is confirmed by the results of investigations [1–3].

An analysis of the characteristics of conjugate heat and mass transfer with a laminar mode of flow in a
boundary layer [3] has shown that a reliable means of protecting the structure from overheating is blowing-in of a gas-
cooler. This weakens the heat flux supplied to the surface, and heat is removed during filtration of the gas in the
pores. In [3, 4], heat-conducting materials that ensure a decrease in the surface temperature of the body in the zone of
the screen are studied. In this work, we present results of solution of the problem of heating through the shell of a
sphere-blunted cone past which a supersonic air stream flows at an angle of attack, with allowance for different flow
regimes in a boundary layer. To reduce the maximum surface temperature, highly conducting materials and blowing-in
of a gas-cooler from a surface of porous bluntness were used. The characteristics of conjugate heat and mass transfer
are sought from the solution of a system of equations which describe a change in averaged values in the boundary
layer, energy-conservation equations for porous spherical bluntness, and the nonstationary heat-conduction equation for
the conical portion of the shell.

Statement of the Problem. In [5], estimations of the time of relaxation in the gas and condensed phases
were made. Based on these estimations, for a model of a perfect gas the system of equations of a three-dimensional
boundary layer in a natural coordinate system fixed on the body in a flow has the form
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Pe = ρh 
γ − 1

γ
 ,   Pe = Pe (s, η) .

For a porous spherical shell (0 ≤ s ≤ s1), under the assumption that the process of filtration of a blown-in gas
normal to the surface in the considered coordinate system fixed at the symmetry axis of the body is one-dimensional,
we write the following energy-conservation equation [4]:
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where 0 ≤ n1 ≤ L; 0 ≤ η ≤ π; H1 = (RN − n1)/RN; r1 = (RN − n1) sin (s
_
), and s

_
 = s ⁄ RN.

For the conical part of the body (s1 ≤ s ≤ sper) the heat-conduction equation takes the form [4]
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where r2 = (RN − n1) cos θ + (s − s1) sin θ.
The boundary and initial conditions for system (1)–(3) are: on the outer edge of the boundary layer for

n → ∞
u → ue (s, η) ,   w → we (s, η) ,   h → he (s, η) (4)

(ue, we, and he in (4) and Pe in (1) were determined by solving the system of Euler equations by the method sug-
gested in [6]); on the surface of the body immersed in a flow at n = 0 [3, 4]

u (s, η) = w (s, η) = 0 ;   (ρv) = (ρv)w (s, η) ,   0 ≤ s < s1 ;

ρv = 0 ,   s1 ≤ s ≤ sper .
(5)

On the outer surface of the body immersed in a flow with 0 ≤ η ≤ π the balance relations are written as
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whereas on the inner surface of the hemisphere and on the conical part they are represented as [4]
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(7)

On the sphere–cone conjugation ring at s = s1 the conditions of an ideal contact are placed and at the extreme
section of the body at s = sper the following adiabatic condition is adopted:
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In the presence of the plane of flow symmetry
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The initial conditions for system (1)–(3) are

T1t=0
 = T2t=0

 = Tin . (10)

Equations (1) were written on the assumption of invariable gas composition; it is valid when the composition
of the blown-in gas coincides with that of the incoming flow. Air is used as a blown-in gas.

To describe a turbulent flow a model of a turbulent boundary layer described in detail in [1] was used. For
a laminar, transient, and developed turbulent regimes of a flow in a boundary layer the following relations are valid:

µΣ = µ + Gµt ,   PrΣ = 
µΣ Pr Prt

µPrt + GµtPr
 .

We will consider a three-layer algebraic model of turbulence provided that in a laminar viscous sublayer near
the surface of a body in a flow the condition µ > µt is continuously fulfilled. The inner region of the turbulent core is
described by the Van Driest–Cebeci formula [7], which for a three-dimensional flow has the form
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and in its absence
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The outer part of the turbulent core is described by Spalding’s formula [8]
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Transition from a laminar model of flow to a developed turbulent one on the spherical bluntness is described
by the Dhawan–Narasimha formula [9]:

G = 1 − exp 



− 3.507 

s − sb

sa − sb




 ,

where the values of the coordinates sb and sa were selected from the conditions of the correspondence of the results
obtained to the data of experimental work [10]. Transition from the inner region of the turbulent core to the outer one
occurs when the condition µt,i = µt,e is satisfied.

It was assumed that the flows considered had conditions identical with those of work [10]: the same incoming
flow Mach numbers, initial temperatures of the body, and geometries of the models. In calculating the state of the
temperature field of the models, the point of stability loss was prescribed on the basis of experimental data of [10].

Methods of Calculation and Initial Data. The boundary-value problem (1)–(10) was solved numerically [11,
12] in Dorodnitsyn’s variables. For the boundary-layer equations, using the method suggested in [11], physically
adapted numerical difference schemes were obtained that ensure the joining of the sought-for characteristics at the in-
terface between the laminar sublayer and turbulent core and taking into account the character of the change in µt
across the boundary layer. This allows one to perform calculations in wide ranges of Reynolds number and intensities
of the blown-in gas flow rate. The solution of the three-dimensional nonstationary equations (2) and (3) was performed
on the basis of the locally one-dimensional scheme of splitting [12].

The geometry of the model, the flow parameters, the intensity and the law of the rate of the gas flow blown-
in from the surface of the spherical bluntness, and the porosity of the material of bluntness were assumed as follows:
Pr = 0.72, Prt = 1, Re = 3.8⋅106, M∞ = 5, RN = 0.0508 m, Pe0 = 106 N/m2, (ρv)w = const, Tin = 288 K, Te0 = 1500
K, he0 = 1.614⋅106 J/kg, γ = 1.4, ε1 = ε2 = 0.85, L = 2.2⋅10−3 m, θ = 5o, β = 10o, and ϕ = 0.34. The thermophysical
characteristics of the materials used correspond to asbestos cement (λ = 0.349 W/(m⋅K), cp = 837 J/(kg⋅K), ρ = 1800
kg/m3) and to copper (λ = 386 W/(m⋅K), cp = 370 J/(kg⋅K), ρ = 8950 kg/m3) [13], as well as to the limiting case
λ → ∞.

For β ⁄ θ = 2, the calculation of the conical part of the body terminates at sper
 ⁄ RN = 5. As follows from [14],

separation of the boundary layer on the leeward side may occur at s ⁄ RN ≥ 5.25 for β ⁄ θ > 2. The calculations were
performed by the marching method despite the nonmonotonic behavior of pressure in the circumferential direction η.
The results were obtained in a wide range of the blowing parameters, including the regime of displacement of the
boundary layer in the vicinity of the forward stagnation point. In this case, the regime of the overflowing of heat from
the conical peripheral part to the forward spherical part sets in. The bluntness becomes a heat sink, and simultaneously
a decrease in the temperature of the shell due to heat transfer in the course of the filtration of a cold blown-in gas in
the pores of the spherical shell occurs.

Analysis of the Results of Numerical Solution. Figure 1a presents the dependences of the convective heat
flux from the gas phase qw

0  and Fig. 1b — the surface temperatures Tw on the longitudinal coordinate s ⁄ RN on the
windward and leeward sides of the plane of symmetry of the body shell made from copper at (ρv)w = 0 (curves 1 and
2 for qw

0  and Tw at t = 0 coincide). In order to estimate the circumferential overflowing of heat η, a two-dimensional
problem in a condensed phase was solved which resulted from Eqs. (2) and (3) in the absence of circumferential over-
flowing of heat (curve 2 in Fig. 1b). It is the distribution of the radiative equilibrium temperature Tw,eq in the plane
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of symmetry on the windward and leeward sides which is determined from the condition of energy conservation on
the spherical and conical surfaces:

qw + cpg (ρv)w (Tin − Tw,eq) = ε1σTw,eq
 4

 ,   qw = ε2σTw,eq
 4 (11)

and which determines the maximum possible temperature of the surface in the absence of heat overflowing in the lon-
gitudinal and circumferential directions, as shown in Fig. 1b (curve 3).

In Fig. 1a, a characteristic feature is profile 1 which corresponds to the initial instant of time. The right part
of this curve starts with a "shelf," which corresponds to the laminar portion of flow with a maximum in the vicinity
of the stagnation point which is spaced-out from the ordinate axis by the value of the angle of attack. The heat flux
decreases before the beginning of the transition section with the coordinate of the point of the loss of stability approxi-
mately equal to 10o in the natural coordinate system fixed at the stagnation point. An increase in the degree of flow
turbulence downstream of the transition point is accompanied by an increase in the heat flux to the surface of the
body in a flow. The heat-flux maximum corresponds to the region of the acoustic line. Downstream of the acoustic
line further acceleration of the flow and its expansion occur, which are accompanied by a decrease in the heat content.
This, in turn, leads to a decrease in the heat flux to the body. When the heat flux passes to the conical part, its dis-
tribution can be nonmonotonic in the directions longitudinal and normal to the body because of the nonmonotonic be-
havior of pressure.

As a result of the heating from outside, the temperature of the solid-body surface increases and its highest
value corresponds to the value of Tw,eq in the region of maximum heat flux for a turbulent mode of flow in the
boundary layer near the stagnation point. Allowance for the heat overflowing yields a decreasing Tw for a high-con-
ducting material of the type of copper and, with the circumferential overflowing of heat not being taken into account,
reduces the surface temperature on the leeward side by 15 K and raises it on the windward side at t = 200 sec (curves
1 and 2, in Fig. 1b). When a steady-state regime is attained, the progress of the process Tw on the leeward side ex-
ceeds the radial equilibrium temperature Tw,eq due to the longitudinal and circumferential overflowing of heat.

Apart from the calculation of Tw,eq from conditions (11), we considered the solution of the given problem for
a material with low thermal conductivity, of the type of asbestos cement. For such a material, as soon as a steady-state
regime is attained, the surface temperature coincides with the values of Tw,eq, since for asbestos cement the process of
heating is one-dimensional. When λi → ∞, i = 1, 2, there is a considerable decrease in Tw (straight line 4 in Fig. 1b)
of the spherical portion of the shell and equalization of the temperature profile of the body in a flow, whereas the val-
ues of the surface temperatures agree with the results of calculations by the formulas given in [4].

Fig. 1. Convective heat flux from a gas phase qw
0  (a) [1, 2) t = 0; 3) 200 sec

(steady-state t → ∞ mode of body heating)] and surface temperature Tw (b) [1)
a three-dimensional process of heat and mass transfer in a condensed phase; 2)
two-dimensional; 3) one-dimensional; 4) λi → ∞; t = 200 sec] vs. the longitu-
dinal coordinate in the plane of symmetry of flow on the windward and lee-
ward sides. qw

0 , W/m2; Tw, K.
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Figure 2 presents the values of qw
0  and Tw along the circumferential coordinate η on the conical portion of

the body in the section s
_
 = 2, which is close to the plane of junction of the sphere and cone and s

_
 = s

_
per (peripheral

region). In the section with s
_
 = s

_
per, the difference between the radiative equilibrium temperature and the surface tem-

perature is observed in the most thermally stressed section with η = 130o (D10 K) at t = 200 sec, whereas the maxi-
mum difference between Tw and Tw,eq at t = 200 sec is noted on the portion of the shell for s

_
 = 2, η = 180o and

amounts to about 35 K (Fig. 2b).
We will consider the influence of the gas-coolant rate of flow from the surface of bluntness. Figure 3 presents

the dependences of the convective heat flux from the gas phase qw and of the surface temperature Tw for the initial
instant of time t = 0 (a) and in the case of a steady-state mode of the occurrence of the process (t = 200 sec) (b). It
is seen that at t = 0 the blowing-in of the gas-coolant from the porous spherical bluntness leads to a decrease in the
maximum of qw on the sphere by a factor of 1.6–2.5 and to its decrease on the conical part of the body (curves 1, 2
in Fig. 1a and 1, 1′ in Fig. 3a). Moreover, here heat is absorbed during gas filtration in the pores of spherical blunt-
ness. As a result, the temperature of the permeable bluntness in the most thermally stressed section η = 0 for (ρv)w =
3 and 6 kg/(m2⋅sec) and at t = 200 sec does not exceed 850 and 550 K, respectively.

Figure 4 demonstrates the distribution of the surface temperature over the circumferential coordinate in the
case of a steady-state mode of the process of body heating (t = 200 sec). As follows from Figs. 3 and 4, the distri-
bution of the surface temperature on injection of the gas-coolant differs qualitatively from the distribution of Tw at

Fig. 2. Distribution of the heat flux qw
0  (a) [1) s

_
 = 2; 2) s

_
 = s

_
per] and of the

surface temperature Tw (b) [1, 2) three-dimensional process of heat and mass
transfer in a body; 1′, 2′) one-dimensional; 1, 1′) s

_
 = 2; 2, 2′) s

_
 = s

_
per; 3)

λi → ∞, i = 1, 2] along the circumferential coordinate η on the conical part of
the body at t = 200 sec for (ρv)w = 0. qw

0 , W/m2; Tw, K.

Fig. 3. Convective heat flux qw (a) and surface temperature Tw (b) [1) a three-
dimensional process of heat and mass transfer in a condensed phase; 2) two-
dimensional; 3) one-dimensional; 4) λi → ∞, i = 1, 2] vs. the longitudinal
coordinate in the plane of symmetry of the flow: 1–4) (ρv)w = 3 kg/(m2⋅sec);
1′–4′) 6. qw

0 , W/m2; Tw, K.
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(ρv)w = 0 for different finite values of λi. On the porous portion of the body Tw may exceed the corresponding
value of Tw,eq, whereas on the conical portion, both on the windward and leeward sides, the steady-state value of
Tw becomes lower than Tw,eq due to heat sink into the porous bluntness. The surface temperature corresponding to
λi → ∞, i = 1, 2, and to the steady-state three-dimensional process of heat transfer at (ρv)w ≠ 0 (Fig. 3b, straight
lines 4, 4′; Fig. 4, straight lines 5, 5′) becomes twice as low in comparison with the data presented in Figs. 1b and
2b. The results obtained at (ρv)w = 0–6 kg/(m2⋅sec) confirm the conclusions on the advisability of using high-con-
ducting materials that ensure an intense sink of heat into the region of permeable bluntness; moreover, it follows
from Figs. 3b and 4 that injection noticeably decreases maximum temperatures, but the use of heat-conducting mate-
rials gives a much greater decrease in the maximum temperature of the shell of the conical surface in the screen
zone. It should be noted here that because of the weakening of the effect of injection on the characteristics of heat
and mass transfer in the gas phase in a turbulent mode of flow in the boundary layer, the effectiveness of using
highly conducting materials is somewhat lower than in laminar flow in a boundary layer [3] in agreement with the
results of [15].

In addition to the solution of the problem in a joint statement, we also studied the problem of the legitimacy
of using separate statements for the case of a given coefficient of heat transfer from the side of the gas phase for an
isothermal (at t = 0) body surface. At (ρv)w = 0, in contrast to the laminar mode of flow in a boundary layer [3],
where a separate statement can be used for calculating the temperature field, the use of the coefficient of heat transfer
to an isothermal surface in a turbulent mode of flow in a boundary layer leads to an increase in Tw up to 5% for a
copper shell on the conical part, whereas at the value of the heat-transfer coefficient obtained by the formulas of [16]
it leads to a decrease in Tw by 4% at t = 200 sec, as compared to the solution of the problem in a joint statement.

In the presence of injection 0 < (ρv)w ≤ 6 kg/(m2⋅sec) in both laminar and turbulent modes of flow in a
boundary layer, the application of an approximate approach based on the use of the coefficient of heat transfer to an
isothermal surface of a copper shell leads to an appreciable divergence (up to 11–20%) of the surface temperature
Tw in the screen zone in comparison with the exact solution of the problem of heating in a joint statement. In the gen-
eral case of a nonisothermal surface, this is due to the complex structure of the heat-transfer coefficient, which, as is
shown in [1], includes a term containing a local derivative related to the temperature drop ∂Tw

 ⁄ ∂s
_
/(Te0 − Tw), which

becomes appreciable in the zone of the thermal screen where significant temperature gradients ∂Tw
 ⁄ ∂s

_
 are realized.

CONCLUSIONS

1. A mathematical model for calculating a three-dimensional conjugate heat and mass transfer in three-dimen-
sional flow past a sphere-blunted cone with allowance for various regimes of flow in a boundary layer has been de-
veloped.

Fig. 4. Distribution of the surface temperature along the circumferential coordi-
nate on the conical part of the body: 1, 3) a three-dimensional process of heat
and mass transfer in a body: 2) two-dimensional; 4) one-dimensional; 1, 2) s

_
 =

2; 3, 4) s
_
 = s

_
per; 5) λi → ∞, i = 1, 2; 1–5) (ρv)w = 3 kg/(m2⋅sec); 1′–5′) 6.

Tw, K.
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2. To reduce a maximum temperature of the shell in the zone of a screen it is advisable to use highly con-
ducting materials in combination with gas-coolant injection through porous bluntness.

3. The effectiveness of using highly conducting materials in a turbulent mode of flow in a boundary layer is
somewhat lower than in laminar mode of flow in a boundary layer.

4. The joint statement of the problem makes it possible to take into account the influence of the nonisother-
micity of the shell wall on the characteristics of heat and mass transfer in a boundary layer.

NOTATION

cp, heat capacity, J/(kg⋅K); G, coefficient of longitudinal intermittence; h, static enthalpy, J/kg; L, thickness of
the shell of a body in a flow, m; M∞, Pr, Re, Mach, Prandtl, and Reynolds numbers of an incoming flow; n, coordi-
nate along the normal to the body surface directed to the gas phase; n1, coordinate along the normal to the body sur-
face directed to the condensed phase; P, pressure, N/m2; qw, convective heat flux from a gas phase, W/m2; rw, r1,
H1, Lame′ coefficients; RN, radius of spherical bluntness, m; s, longitudinal coordinate, m; sb and sa, coordinates of the
beginning and end of the transition zone m; t, time, sec; T, temperature, K; u, v, w, components of the mean-mass
velocity vector, m/sec, in a natural coordinate system s, n, η; β, angle of attack, deg; εi, i = 1, 2, emissivities of the
body surface; θ, conicity angle, deg; λ, thermal conductivity, W/(m⋅K); η, circumferential coordinate, deg; µ, coeffi-
cient of dynamic viscosity, kg/(m⋅sec); ρ, density, kg/m3; (ρv)w, gas-coolant flow rate, kg/(m2⋅sec); σ, Stefan–
Boltzmann constant, W/(m2⋅K4); Φ, porosity. Subscripts: e, outer edge of the boundary layer; e0, flow stagnation
point; w, surface of the body in a flow; g, gas phase of a porous spherical shell; i, inner region; eq, equilibrium; t,
turbulent mode of flow in a boundary layer; Σ, total value; 1, 2, characteristics of the condensed phase of the spherical
and conical parts of the body; in, initial conditions; per, peripheral portion of the shell. Superscripts: 0, heat flux from
a gas phase in the absence of injection; bar, dimensionless quantity.

REFERENCES

1. V. I. Zinchenko, Mathematical Simulation of Conjugate Problems of Heat and Mass Transfer [in Russian], Izd.
Tomsk. Univ., Tomsk (1985).

2. V. A. Bashkin and S. M. Reshet’ko, On the maximum temperature of blunting with account for heat conduc-
tion, Uch. Zap. TsAGI, 20, No. 5, 53–59 (1989).

3. V. I. Zinchenko, K. N. Efimov, A. G. Kataev, and A. S. Yakimov, Investigation of the characteristics of heat
and mass transfer in spatial supersonic flow past a blunt body, Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 137–143
(2002).

4. V. I. Zinchenko and A. S. Yakimov, Investigation of the characteristics of heat transfer in flow past a sphere-
blunted cone at an angle of attack and gas injection from the blunting surface, Zh. Prikl. Mekh. Tekh. Fiz., No.
4, 162–169 (1999).

5. A. M. Grishin and V. M. Fomin, Conjugate and Nonstationary Problems of the Mechanics of Reacting Media
[in Russian], Nauka, Novosibirsk (1981).

6. V. A. Antonov, V. D. Gol’din, and F. M. Pakhomov, Aerodynamics of Injection-Involving Bodies [in Russian],
Izd. Tomsk. Univ., Tomsk (1990).

7. T. Cebeci, Behavior of turbulent flow near a porous wall with pressure gradient, Raketn. Tekhn. Kosmonavt., 8,
No. 12, 48–53 (1970).

8. S. V. Patankar and D. B. Spolding, Heat and Mass Transfer in Boundary Layers [Russian translation], E′ner-
giya, Moscow (1970).

9. V. L. Kovalev, Heterogeneous Catalytic Processes in Aerothermodynamics [in Russian], Fizmatlit, Moscow
(2001).

10. R. H. Feldhuhn, Heat transfer from a turbulent boundary layer on a porous hemisphere, AIAA Paper, No. 119
(1976).

11. A. M. Grishin, V. I. Zinchenko, K. N. Efimov, A. N. Subbotin, and A. S. Yakimov, The Iteration-Interpolation
Method and Its Applications [in Russian], Izd. Tomsk. Univ., Tomsk (2004).

758



12. A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).
13. Yu. V. Polezhaev and F. B. Yurevich, Thermal Protection [in Russian], E′nergiya, Moscow (1976).
14. G. F. Widhopf and R. Hall, Transitional and turbulent heat-transfer measurements on a yawed blunted conical

nosetip, Raketn. Tekhn. Kosmonavt., 10, No. 10, 71–79 (1972).
15. V. A. Bashkin and S. M. Reshet’ko, On the temperature regime on blunted cones and wedges in the presence

of regions of transient and turbulent flows, Uch. Zap. TsAGI, 24, No. 1, 163–166 (1993).
16. B. A. Zemlyanskii and G. I. Stepanov, On calculation of heat transfer in spatial flow past thin blunted cones

by a hypersonic air flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 173–177 (1981).

759


